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Abstract

The sub-band spacing can be comparable to the bias and kT in large diam-

eter carbon nanotubes. As a result, the role of higher sub-bands cannot be

neglected in transport. We discuss two interesting effects involving single par-

ticle transport such nanotubes: (i) The transmission probability of electrons

at the crossing bands (around E=0) and higher sub-bands are quantitatively

different. As a result, we show that the small bias resistance may be larger

when the Fermi energy is away from the band center as opposed to being close

to the band center. (ii) The primary contribution to current flowing in the

presence of an applied bias is due to the crossing sub-bands. This is a result

of the electron in the higher sub-bands undergoing Bragg reflection. As a con-

sequence, in an idealized case where scattering is neglected, the differential

conductance cannot be much larger than 4e2/h.
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Most experimental L-3 and theoretical work of electron transport in individual nanotubes

deal with single wall nanotubes (SWNT). In these experiments, the spacing between sub-

bands is typically larger than the applied voltage and kT. Recent experiments on multi

wall nanotubes (MWNT) 4-6 are fundamentally different in that the sub-band spacing is

comparable to kT and the applied voltage. It is further believed that transport in these

experiments primarily takes place along individual layers, with little inter-layer coupling.

Two salient features in the work of Frank et. al a are: a peak in the bar chart of small bias

conductance versus number of measurements around 2e2/h and an anamolous increase in

differential conductance with increase in applied voltage. The second feature refers to the

point that the increase in differential conductance is much smaller than the value obtained

by a picture that simply counts the increase in number of modes (or sub-bands) with increase

in applied voltage. Motivated by these recent studies on MWNT, we study the role of higher

sub-bands in transport with the aim of clarifying the simple single particle physics involved.

This paper deals with two different issues involving transport through higher sub-bands: (i)

the role of large reflection probability at higher sub-bands in comparison to the band center

and (ii) the role of Bragg reflection. We emphasize that Bragg reflection plays a unique role

in nanotube wires.

Most theoretical studies of nanotube conductance have so far calculated the phase coher-

ent transmission coefficient. Schonenberger et. al, 5 have recently measured phase coherence

lengths (L_) in MWNT that are as small as 100 ,:1. As the phase coherence length plays an

important role in determining the conductance, the first part of our discussion takes finite

L_ into account.

The two terminal resistance of a phase coherent sample can be written as,

R : Rcontact q- Rintrinsic

h 1
= - e2{ mfy,(E) + , (1)

where, f'(E) = -df(E)/dE. Re.tact is resistance due to the nanotube-contact interface

(which has assumed to be perfect) and t_intrinsi c is the intrinsic resistance of the nanotube
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sampledue to scattering from defects,m is the sub-band index, TIn(E) = __,n Tm,_(E) is the

two terminal transmission probability and Rm(E) = 1 -T,_(E) is the reflection probability. 7

In the event that all channels are perfectly ballistic, the two terminal resistance is equal to

the contact resistance. In the case of a nanotube with length (L) larger than L,, Eq. (1) is

not valid. The essential physics can however be captured by the following phenomenological

modification. T Let the phase coherent transmission coefficient of a L, long nanotube section

be represented by T_(E). Then, the resistance can be thought of as having a contribution

due to the contacts h x [which is not different from the phase coherent case; Eq.
2_"-'_ f,Y, CE)

(1)] and L/L¢ additional contributions due to the L_ long sections:

h 1 L fF_,mR_(E)f'(E) (2)
R"_ _e2{_mf f,(E ) + L---_" [_,,,f f,(E)], f_mT_(E)f,(E) }"

The important point of Eq. (2) is that the intrinsic resistance depends on two ratios,

L and a fEmR (E)f'(E) (3)
L_, M f _,m TC_(E)f'(E) '

where M = r,m f f'(E) is the number of sub-bands involved in transport around the Fermi

energy. For simplicity, we assume that the reflection probability of all sub-bands (P_) at a

particular energy are similar, f R_(E)f'(E) = r. Then a has a particularly intuitive and

simple form:

1 r r
= --. - (4)

M 1 - r Mt

i.e., a is the ratio of the reflection probability and the number of sub-bands times the

L is much larger than a-_ - Mttransmission probability. If _- - -7-, the contribution of the second

term (intrinsic resistance) to the total resistance [Eq. (1)] can be non trivial and the an

interesting scenario develops where the four terminal reistance can be larger when many

sub-bands (as opposed to only the crossing sub-bands) are involved in transport (discussion

in the next two paragraphs).

The above discussion is very relevant to nanotubes because of the values r and M assume

a't different energies. As energy increases from the band center, both the number of sub-

bands M and the reflection probability increase. Provided that the reflection probability
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increasesfast enough, the value of a = M_/tcan be smaller at higher energies than at the
t

band center. The consequence of this is explained using a concrete calculation below.

We calculate r in the context of uniform disorder as in Ref. 8. The transmission prob-

ability of a 100 _t long (40,40) nanotube region with disorder is plotted in Fig. 1. The

energy of the first sub-band opening for this tube is approximately at 0.25eV and this en-

ergy decreases with increase in tube diameter (it is 0.15eV for a (60,60) nanotube). The

important point to note in Fig. 1 is that the reflection probability increases as sub-bands

are added. There are 2, 6, 10 and 14 sub-bands at energies of 0, 0.3, 0.7 and 1.0eV re-

spectively, and the corresponding values of a for the dashed line are xxx. So the intrinsic

resistance as measured in a four terminal setup (total resistance minus contact resistance)

increases with increase in number of sub-bands! That is, in an experiment measuring the

small bias conductance as a function of the Fermi energy through the sample: the resis-

tance will be larger when the Fermi energy is located at an energy where there are many

sub-bands, in comparison to the case when the Fermi energy is located at the band cen-

ter. Fig. 1 considered the change in transmission in the case of defects that correspond to

changing the on-site potential of the carbon atoms, s Our observations however do not rely

on the detailed model of defects. Kortryko et. al have shown that energies around E=0

corresponding to the crossing sub-bands are least affected compared to higher sub-bands

using other defect models, and Ando et. al have come to similar conclusions using analytical

methods that do not assume specific defect models. We should mention that the discussion

above has assumed that L¢ in the nanotube is not very sensitive to the location of the Fermi

energy / number of sub-bands.

The discussion so far has centered on the case where the potential drop across the nan-

otube is insignificant (small bias case). We now discuss the second aspect of this paper,

which concerns the differential conductance versus applied bias in the case of a defect-free

nanotube with good contacts to the voltage source. We calculate the current versus ap-

plied voltage when the voltage drops linearly across the nanotube. The motivation for this
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stemsfrom the fact that a numberof authors havereported calculationsof reasonablylarge

screeninglengthsevenfor armchair tubes. The central point of this study is that an applied

bias acrossthe nanotube results in a transport bottle neck, which will result in a smaller

than expected increase in differential conductance versus applied bias in the experiments of

Ref. 4. This point is best understood by presenting results of an I-V calculation. We con-

sider the current versus voltage in a 1000 Ji long (10,10) nanotube by assuming an almost

linear drop in applied bias. Perfect carbon nanotube leads are assumed and the current

is computed using the procedure in reference 8. Fig. 3 is the calculated I-V curve. The

surprising feature here is that the maximum conductance and current are only 4e_/h and

xxx respectively. That is, the conductance is equal to the value that one would get if only

two modes conduct. What happens to the contribution of the other modes injected into the

nanotube? The answer to this lies in Fig. 3, which is a plot of the E(k) relationship of a

nanotube at different positions along the length of a nanotube. The band centers are at Va

(the applied voltage) and zero at the left and right ends of the nanotube respectively. Close

to the left contact, electrons injected at the band center in the two available modes flow

to the right contact unimpeded. This is however not the case for higher sub-bands. The

k-vector of an electron injected from the left contact into a higher sub-band increases and

eventually corresponds to the value at its sub-band extrema, where Bragg reflection occurs.

The solid horizontal line is an example of an electron injected from the left at a higher sub-

band, which undergoes Bragg reflection at the location of the arrow. Such a reflection occurs

for all other (non-crossing) sub-bands too. This explains the maximum conductance of 4e---2-2

in Fig. 2(b) and the reason for zero current contribution of the non-crossing sub-bands. It

should be noted that in Fig. 2(a) the current plateaus out, which implies the zero differential

conductance in Fig. 2(b). Again, this can be understood by using Fig. 3. Applying a larger

than about 3.1 V l° leads to some energy ranges in the crossing bands being Bragg reflected,

while new energy ranges in the crossing bands contributing to transport. They conspire

in a manner so as to keep the total current constant in the voltage range shown. ? As we

are not aware of any MWNT nanotube experiments with such a large applied voltage (the

1-5



nanotubestypically burn out), we would like to stress the smaller applied voltages,where

electronsare still injected into many sub-bands.

Someremarks regarding the relationship of the above calculations to experimentsare

necessary.Nanotube experiments typically involve scenarios (a) where both contacts are

wellcoupledto the nanotubeor (b) oneor both contactsarepoorly coupled to the nanotube.

The results of Fig. 2 correspond to both contacts being well coupled to the nanotube. If on

the other hand one contact was poorly coupled to the nanotube such that a major fraction

of the applied voltage dropped prior the nanotube, then electrons injected at higher sub-

bands may be transmitted to the right contact. As a result the differential conductance may

increase with applied voltage. The conductance contribution due to energies close to the

band center will however be much smaller than 4e2 due to the large contact resistance. Two-K-

other physical mechanisms that lead to differential conductances larger than that shown in

Fig. 2(b) are discussed: (a) We assumed a rather linear drop in the applied voltage. If most

of the "applied voltage dropped across short lengths of the tube such that the electric field is

large, sub-band to sub-band tunneling will aid in leading to larger differential conductances.

(b) An electron traveling in a higher sub-band can can loose or gain energy via scattering,

which can result in a wave vector change that will aid the electron to reach the right contact.

The purpose of this paper is to present aspects involved in electron transport through

higher sub-bands of a carbon nanotube. The first effect we discuss concerns the role of

the competition between increase in number of sub-bands (Mr) and increase in reflection

probability (r)in determining the conductance. We show that the small bias resistance may

be larger when the Fermi energy is at an energy where many sub-bands are present as

opposed to the case where the Fermi energy is close to the band center. The second effect

discussed in this paper concerns the role of Bragg reflection in an experiment involving

current versus applied voltage. We showed that as a result of the unique band structure of

carbon nanotubes, Bragg reflection is an important mechanism for reduction of differential

conductance. These effects will be important in large diameter MWNTs, where the higher

sub-bands are easily accessible in transport experiments. Some drawbacks, which are beyond
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the scopeof the presentwork havebeendiscussedin the previousparagraph.
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Figure Captions:

Fig. 1: The transmissionversusenergyfor a 100 _t long (40,40) armchair tube. The three

curvescorrespondto two no defectsand two different strengths for defectscattering.

Fig. 2: (a) The current versusvoltage curveof a (10,10)nanotube with uniform voltage

drop acrossits length. The length was taken to be 1000Jt. (b) The important feature

is that inspite of the large number of modesat higher energies,the maximum differential

conductanceis 4e_/h.

Fig. 3: E(k) relationship at different sections along the length of a nanotube. Each

rectangular box representsan energyversuswave vector diagram with the band bottom

equal to the electrostatic potential at that section. This figure aids in understanding the

results shownin Fig. 2: The crossingbandscarry current to the right contact but all other

bands are reflected to the left contact becauseits wave vector reachesa point where the

velocity dE/dk = 0 (Bragg reflection).
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